Videos

 

Click on the titles to watch previous webinars

Sarah Farthing - University of Nottingham, UK

16.04.2020

Abhilasha Tripathi - Indian Institute of Technology Kanpur, India

30.04.2020

Cecilia Sundberg - KTH Royal Institute of Technology, Sweden

14.05.2020

14.05.2020

Robert Bachmann - University of Kuala Lumpur, Malaysia

11.06.2020

Michael Shafer - Warm Heart Worldwide, Thailand

25.06.2020

Stella Foster - University of Leeds, UK

09.07.2020

Gerrit Surup - Norwegian University of Science and Technology, Norway

23.07.2020

Mukarram Zubair - Imam Abdulrahman Bin Faisal University, Saudi Arabia

29.10.2020

Christian Wurzer - University of Edinburgh, UK

26.11.2020

Suzanne Allaire - GECA Environment, Canada.

12.11.2020

Krishna Hara Chakravarty - Mash Energy, Denmark

10.12.2020

Paul Anderson - Woodgas Pyrolytics Inc., USA

Cecilia Sundberg - KTH Royal Institute of Technology, Sweden

Hugh Mclaughlin - Next Char LLC, USA

14.01.2021

Harald Bier - European Biochar Industry Consortium, Germany

04.03.2021

Sonil Nanda - Titan Clean Energy Projects Corporation, Canada

Biofuels and biomaterials are gaining attention because of their ecofriendly nature and renewable precursors. Biochar is a recalcitrant carbonaceous product obtained from pyrolysis, carbonization, torrefaction and gasification of renewable biomass and other biogenic wastes. This presentation provides insights on some of the promising applications of biochar such as waste-to-energy, reclamation of degraded soils and wastewater, carbon sequestration and manufacturing of specialty activated carbons and engineered biomaterials.

04.03.2021

Filipe Rego - Aston University, UK

Using slow pyrolysis wheat straw char to decontaminate water showed that adsorption performance comparable to commercial activated carbon can be achieved. Lower temperature char was the best performing, removing 95% of an organic dye from solution, which was connected to surface chemical functionalities. Modifications to the process (increasing feedstock moisture content, using CO2 atmosphere, or feedstock KOH-impregnation) allowed in some cases to improve adsorption performance and can potentially lead to better tailored products.

2019

Wolfram Buss - Australian National University, Canberra

26.09.2019

Christian Wurzer - University of Edinburgh, UK

26.09.2019

Pierre Oesterle - Umea University, Sweden

03.10.2019

Sabina Nicolae - Queen Mary University London, UK

3rd October 2019

Jorge Lopez Ordovas - Aston University, UK

10th October 2019

Josephine Getz - Technological University Dublin, Ireland

10th October 2019

Christian di Stasi - University of Zaragoza, Spain

24th October 2019

Gianluca Greco - University of Zaragoza, Spain

24th October 2019

Filipe Rego - Aston University, UK

31st October 2019

Anjali Jayakumar - University of Edinburgh, UK

31st October 2019

Anthony Szego - Stockholm University, Sweden

7th November 2019

Pierpaolo Modugno - Queen Mary University London, UK

14th November 2019

Giulia Ravenni - Technical University of Denmark

14th November 2019

Xia Wang - Stockholm University, Sweden

21st November 2019

Qusay Ibrahim - Fraunhofer Institute, Germany

28th November 2019

Dilani Rathnayake - Ghent University, Belgium

28th November 2019

Maciej Olszewski - University of Hohenheim, Germany

5th December 2019

Yurong Liu - Curtin University, Australia

5th December 2019

Przemyslaw Maziarka - Ghent University, Belgium

12th December 2019

Judith Gonzalez Arias - University of Leon, Spain

19th December 2019

Elias Azzi - KTH Royal Institute of Technology, Sweden

19th December 2019

18.03.2021

Sara Lago Oliveira - Edafotec SL, Spain

Traditional soil remediation technologies are costly and not environmentally friendly. This webinar presents biochar as a solution for soil decontamination when mixed with tailor-made artificial soils, which is an eco-friendly solution, cost-effective and also contributes to a circular and climate neutral economy.

01.04.2021

Manvendra Patel - Jawaharlal Nehru University, India

Low cost adsorbents are essential for aqueous contaminants removal in developing countries. Biochars and engineered biochars provide a sustainable solution. This webinar presents the development, characterization and application of biochars. Developed biochars provide excellent sorption capacity for ciprofloxacin and acetaminophen sorption. Magnetization of biochar enhanced sorption capacity several times. Thus, biochars developed from locally available abundant waste materials can be a sustainable solution

18.03.2021

Peter Olivier - The Burning Question, USA

The founding story of biochar comprises a lot of enthusiasm about re-establishing a millenia old technology to sequester carbon in soils as illustrated by the discovery of Terra Preta in Brazil. However, a decade after the first wave of a renewed interest in biochar, the industry is still in its infancy. This talk draws a line from the early perceptions and misperceptions of biochar to current obstacles in industrialising the sector.  

01.04.2021

Robert Lavoie – Air Terra Inc., Canada

15.04.2021

Elisa Cavallin - Hasselt University, Belgium

This presentation is meant to provide some information on the legal dimension of biochar and to provide an overview of the opportunities and bottlenecks in the biochar value chain. The scope of the presentation is limited to European law and policy and to this moment in time with an outlook on the future. The presentation covers developments in policy that are relevant for the biochar value chain after the publication of the Green Deal and some documents adopted under its umbrella, in particular the Circular Economy Action Plan and the Farm to Fork and Biodiversity Strategies. In addition, some developments in legislation are also considered and explained, namely the new Fertilising Products Regulation and the new Organic legislation. Finally, some bottlenecks are described, i.a. with regards to the waste and the chemicals legislation, and some potential opportunities are highlighted."

15.04.2021

Asterios Papageorgiou – KTH Stockholm, Sweden

The use of biochar to stabilize soil contaminants is emerging as a technique for remediation of contaminated soils. This presentation describes the findings from an environmental assessment of systems where biochar produced from wood waste with energy recovery is used for remediation of soils contaminated with polycyclic aromatic hydrocarbons and metal(loid)s in Sweden. The assessment combined material and energy flow analysis, life cycle assessment, and substance flow analysis

29.04.2021

Frank Brigano - Glanris Water Systems Inc., USA

Glanris rice husk biochar is a designer or hybrid media that can remove organic and inorganic contaminants, e.g., heavy metals, from the water environment.  Produced from agricultural waste using a patented process, the Glanris media sequesters carbon preventing the carbon from impacting the climate plus has been demonstrated to remove a variety of heavy metals from water, retaining metal removal function in the presence of light oils, as well as removing organic contaminants.  This presentation gives an overview of the impact of rice husk waste on the climate, charring technology, laboratory and field data showing the efficaciousness of the Glanris rice husk biochar plus potential media applications.

29.04.2021

Anwarul Islam – James Cook University, Australia

Silver nanoparticles are one of the most beneficial forms of heavy metals in nanotechnology applications. Due to its exceptional antimicrobial properties, low electrical and thermal resistance, they are used in a wide variety of products, including consumer goods, healthcare, and electronics. When released into the environment the same antimicrobial properties can present toxic consequences, making it crucial to remove silver nanoparticles from wastewater. Several
removal technologies are available, but adsorption on low-cost materials such as biochar might be the most promising way forward.

Session 10.2

Session 7.2